
Chapter 17 The Design, Build, Integrate and Test phases
Based on draft, so may be different to published text

0806-1

17. The Design, Build, Integrate and Test States

At this point in the System Development Process (SDP), the design state is over and the system

starts to come together. The role of the systems engineer undergoes a significant change. Until

now, the systems engineers led the technical design activity. Now their role starts to become

that of a catalyst. At the completion of the System Requirements Review (SRR) the structure of

the system has been designed1. These states begin with the design and the preliminary planning

of the testing, field installation, and training programs. The design is mostly carried out by

hardware and software engineers who produce the detailed schematic diagrams and software

listings (Section 3.2.4).

In an effective systems development organization, some of the systems engineers move

from the design organization to the Anticipatory Testing department once the Preliminary

Design Review (PDR) is over. Others work with the program manager to optimize the activities

on a total project basis. This chapter discusses some of their roles during these states of the

SDP.

17.1. The role of the Anticipatory Testing department

The Anticipatory Testing department performs the sensitization training and in-process tests

and inspections during the design and build states (Section 10.2.2). Later, the systems engineers

lead the integration tests to verify that the components of the system work together. The

assumption is the units or components have been tested on a stand-alone basis and work

correctly. When a full requirement is met and is validated during the integration test, the section

of the test procedure may be reused during the later system level acceptance test. The toughest

part of their role is not to ensure that what is being done is correct, but to figure out what is not

being done and ought to.

17.2. Acting as communicators to locate and resolve problems across

interfaces

Effective interface management is critical to the timely completion of these states. When

problems show up, the systems engineer takes the lead in analyzing the symptoms to determine

the root cause, which might include:

• A unit (hardware or software) does not work as specified.

• The units work correctly on a stand-alone basis, but there is a problem at the interface in

one or both units.

When the systems integration state begins, all units are supposed to have been tested and

shown to be working. During integration a unit may not work because of an:

• Interface problem - which was not found by analysis during the design and build states.

This situation tends to occur when systems engineering ends at SRR.

• Internal unit defect - which was not found during unit testing. In this situation, there

may be more than one problem. Someone in the organization reported to the customer

that the units were working and were ready for integration. The integration process has

just shown that one or more units themselves are not working. Whoever reported to the

customer that the units were working lied to the customer. If the customer is not told

right away that the problems are within the units, this situation may constitute a false

claim (Section 19.5.1).

1 In the ‘A’ paradigm

Chapter 17 The Design, Build, Integrate and Test phases
Based on draft, so may be different to published text

0806-2

17.3. Facilitating communications between the different specialized

departments

The systems engineer ensures that the barriers between the different groups are down. For

example, at LuZ, the development group needed to exercise the control console software under

development. The team wanted to take time out and develop a field simulator that would

emulate a number of Local Controllers (LOC) connected to a cable. They estimated the task

would have taken about two weeks. At the same time, the manufacturing department needed to

burn-in each LOC for a week before shipping them from Jerusalem to California. Their first

thoughts were to leave each LOC powered up for a week, then re-run the unit test when the

week was up. All LOCs passing the test were to be shipped; failures would then be treated as

failures during unit tests.

After some discussion, an agreement was reached between the two departments to burn-in

the LOCs concurrent to the Control Console Test. Two control consoles were set up in the

development department and connected to a simple serial data switch. A long cable was

stretched between the two departments, and the LOCs being burned-in were connected to the

Control Console via the switch. One control console exercised the LOCs most of the time using

software that had been validated. When the development department needed to access the

LOC’s, they threw the switch and had access. The LOCs didn’t care who was accessing them.

When a LOC failed during the burn-in, the development department notified the manufacturing

department almost instantaneously, and data was available about the time of failure. This

arrangement:

• Provided a win-win situation.

• Avoided the need to develop the field simulator.

• Avoided a schedule slippage of at least two weeks

• Avoided salary costs of at least sixteen man days.

The role of the systems engineer is to identify these types of situations and recommend

appropriate actions.

17.4. The cataract approach to build planning

Implementation and delivery of systems are often performed in partial deliveries, commonly

called “Builds”. Each successive build provides additional capabilities. Planning builds requires

allocating system level requirements to builds and documenting the allocation in a Build Plan.

MIL-STD-2167A (Section 4.4) provides guidance on build planning for software systems, and

may be used as a guideline for systems as a whole. The cataract approach to Build planning

may be likened to a Rapid Prototyping scenario in which the requirements for each Build are

frozen at the start of the Build.

The cataract approach however, is more than just grouping requirements in some logical

sequence and charging ahead. Build plans must be optimized on the product, process and

organization axes to:

• Make use of the fact that typically, 20 percent of the application will deliver 80 percent

of the capability (Arthur, 1992) page 15) by providing that 20 percent in the early

builds.

• Allow the waterfall approach (Section 3.2) to be used to plan the Build. This approach is

tried and true over a short time frame on a small project.

• Produce a Build with some degree of functionality that also can be used by the customer

in a productive manner. For example, the first Build should as a minimum, provide the

user interface and the shell to the remainder of the functions. This follows the rule of

Chapter 17 The Design, Build, Integrate and Test phases
Based on draft, so may be different to published text

0806-3

designing the system in a structured manner and performing a piecemeal

implementation.

• Optimize the amount of functionality in a Build (features v. development time).

• Allow a factor for the element of change.

• Maximize cohesion and minimize coupling of units. This minimizes changes to the units

and tends to avoid the need to regression test the whole previous Build.

• Minimize the cost of producing the Build.

• Balance the number of personnel available to implement the Build (development, test

and systems engineers) over the SDP to minimize staffing problems during the SDP.

These activities will produce a time line that is as smooth as the one shown in Figure 17.1.

Each system level requirement will take a different amount of time to implement, accurate

estimates of time to implement requirements are important. Task planning is based on

objectives and results (Section 9.4.9), rather than activities will help provide this data.

In a typical project, the states in Figure 17.1 based on the Waterfall view break down as

follows:

• Design and build - A parallel effort in which:

 Software - Turns the requirements into code, and evaluates and perhaps

incorporates Commercial-off-the-shelf (COTS) software.

 Hardware - May be working with disk drives or other storage elements,

networks, workstations and custom hardware elements.

 Test - Developing test plans.

 Systems engineering - are coordinating, technical performance analysis and

measurement, change assessment, risk management, anticipatory testing

(Chapter 10) and documentation; namely all the functions described in this

chapter.

• Integrate - The hardware and software units are integrated and their working together is

verified.

• Test - The integrated system is tested prior to acceptance by the customer.

• Transition - The system is turned over to the customer.

• Operate - The system is operated by the customer.

During the first Build, the activities are straight forward. Once the design of a Build is over,

and the system turned over for integration, the design team assists with the integration, while

their main effort starts to work on the design of the next Build.

Figure 17.1 Coordinated task activities

Chapter 17 The Design, Build, Integrate and Test phases
Based on draft, so may be different to published text

0806-4

Problems tend to show up during the integration and test states. When a problem is noticed,

a Discrepancy Report (DR) is issued. This DR may be resolved by fixing the defect in the

current Build before delivery, or assigning it to be fixed in a subsequent Build. In either event,

the amount of work performed is increased (the cost of rework). When looking at the work load

from this perspective, the importance of fixing defects early in the process (Section 10.6) is

substantiated.

Project personnel move from one build to the next. Ideally the Builds are sequential with no

wasted time between them; the development team moves from one build to the next, as does the

anticipatory testing team. Each Build may pass through the elements of the waterfall process.

The customers tend to get more and more involved with the system during successive Builds.

The costs of the later Builds may be estimated more accurately than those of earlier builds if

product or results based cost measurements (Section 9.4.10) are taken during the earlier Builds.

Consequently the planned and actual costs of the later Builds will tend to converge. The project

may still go over budget, but at least there will be fewer surprises.

17.5. Assessing the impact of changes

The only thing constant in life is change. Design is under way and any change will affect future

work, and may affect present and past work. Changes in requirements during the SDP (Section

5.8) constitute a major risk to a project and tend to cause, and hence are related to, cost and

schedule impacts. As the development proceeds down the SDP, the cost of making changes

increase since parts of the system have already been built and may have to be scrapped.

The task of assessing the impact of changes also becomes more complex. This is where

money “saved” up-schedule tends to start to hurt the project. Money is usually not spent up-

schedule on adequate documentation or on adequate Computer Enhanced Systems Engineering

(CESE) tools, which makes change management difficult at this time, and hence expensive.

The role of the systems engineer is to work with the engineering specialists, the

configuration control department and program management to assess the effect of a change and

provide a cost and schedule impact assessment report (Section 5.8).

Effective implementation of this role will require the use of computer software, namely:

• CESE Tools - may be used to assess the impact of changes in requirements.

• Project management software - can be used to compare the differences between the

pessimistic and optimistic times in performing each of the revised project tasks. When a

task has a risk of overrunning its allocated time, the software can play a role in assessing

some “what if” scenarios. Different resource allocations can be suggested and evaluated

in a very short time to try to shorten the time to perform the task. If that doesn’t become

possible, then other tasks may be changeable to ensure that the overall schedule is

maintained.

• Spreadsheets - may be used to assess cost impacts and test potential implementation

scenarios.

17.6. Performing hardware-software trade-offs

By virtue of knowledge of both hardware and software the systems engineer can make optimal

trade-offs between hardware and software as appropriate. For example, a high speed data

processing function may perhaps be implemented by:

• Build - Designing a printed circuit card containing custom high speed digital circuitry.

• Buy - Purchasing a COTS product containing a Digital Signal Processing Integrated

Circuit (IC) and circuitry and using a mixture of COTS and custom software.

Chapter 17 The Design, Build, Integrate and Test phases
Based on draft, so may be different to published text

0806-5

The role of the systems engineer is to analyze the effectiveness of each approach for the

organization at a particular time and with specific available resources, and recommend the

optimal approach.

17.7. Test planning

The role of the systems engineer is to assist the test department in developing test plans

(Section 12.6) for:

• The system.

• Each individual sub-system.
• Coordinating the development and use of test tools.

When the system requirements are written to comply with the requirements for writing

requirements (Section 12.4.1) the task of building a requirements-test matrix is simple, since a

test will verify compliance of a whole requirement. When, as in the real world, the requirements

are defective, the task of ensuring that the delivered system meets the customer’s needs is more

difficult. Tests have to be designed for partial requirements, and there is no simple way to

effectively ensure all sections of all requirements have been tested.

17.8. Planning the transition to the operations and maintenance state

Systems engineers in the Anticipatory Testing department work with operations personnel to

plan the transition of the system after acceptance testing. This may occur in Builds, so the

transition may be considered as an upgrade. Should the system be supporting operations, non-

interference with operations maybe an additional complexity.

17.9. Summary

In these states of the SDP, systems engineers move from the design organization to the

Anticipatory Testing department. Others work with the program manager to optimize the

activities on a total project basis. Although the number of systems engineers decreases during

these states, they still have an important part to play as the glue that holds the project together.

Important aspects of their work include:

• Interface management.

• Measuring technical performance.

• Ensuring the design meets the requirements.

• Facilitating communications between the different groups working on the project.

• Optimizing build planning.

• Managing change

• Performing design trade-offs.

17.10. References

Arthur, L. J., Rapid Evolutionary Development, John Wiley & Sons, Inc., 1992.

